IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v457y2023ics0096300323003648.html
   My bibliography  Save this article

The fastest stabilization of second-order switched systems with all modes unstable via an optimal state-dependent switching rule revisited

Author

Listed:
  • Yuan, Xiaolan
  • Zhou, Yusheng

Abstract

In this paper, an optimal state-dependent switching rule design method is proposed for the fastest asymptotic stabilization of second-order switched systems, wherein all eigenvalues of each subsystem are positive real parts. First, the definition of an optimal invertible transformation is proposed based on the physical meaning of a vibrational system with one degree-of-freedom. Then, the formulas of both the optimal invertible transformations and the optimal switching lines are calculated. In this way, the designed optimal state-dependent switching rule can minimize the energy increment of unstable subsystem operation and maximize the energy loss of system switching simultaneously, achieving the fastest asymptotic stability. Moreover, the critical stability condition for a general switched system is investigated, demonstrating that this state-dependent switching rule is optimal. Finally, three examples are provided to verify the effectiveness and superiority of the results.

Suggested Citation

  • Yuan, Xiaolan & Zhou, Yusheng, 2023. "The fastest stabilization of second-order switched systems with all modes unstable via an optimal state-dependent switching rule revisited," Applied Mathematics and Computation, Elsevier, vol. 457(C).
  • Handle: RePEc:eee:apmaco:v:457:y:2023:i:c:s0096300323003648
    DOI: 10.1016/j.amc.2023.128195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323003648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:457:y:2023:i:c:s0096300323003648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.