IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v454y2023ics0096300323002692.html
   My bibliography  Save this article

Stability and bifurcations in scalar differential equations with a general distributed delay

Author

Listed:
  • Kaslik, Eva
  • Kokovics, Emanuel-Attila

Abstract

For a differential equation involving a general distributed time delay, a local stability and bifurcation analysis is performed, relying on fundamental properties of the characteristic function of the random variable whose probability density function is the delay distribution. Based on the root locus method, the bifurcation curves are determined in the considered parameter plane, also providing the number of unstable roots of the analyzed characteristic equation in each of the open connected regions delimited by these curves. This leads to a characterisation of the stability region of the considered equilibrium in the corresponding parameter plane. A Hopf bifurcation analysis is also completed in the general setting, and the criticality is analyzed by employing the method of multiple times scales. In contrast with some previously reported results from the literature, our analysis is accomplished in a general context and only then exemplified for particular types of delay distributions (e.g. Dirac, Gamma, uniform and triangular). The theoretical results are showcased in the framework of a simple neural model.

Suggested Citation

  • Kaslik, Eva & Kokovics, Emanuel-Attila, 2023. "Stability and bifurcations in scalar differential equations with a general distributed delay," Applied Mathematics and Computation, Elsevier, vol. 454(C).
  • Handle: RePEc:eee:apmaco:v:454:y:2023:i:c:s0096300323002692
    DOI: 10.1016/j.amc.2023.128100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323002692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Jinchen & Peng, Mingshu, 2016. "Stability and bifurcation analysis for the Kaldor–Kalecki model with a discrete delay and a distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 66-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Miao & Zhang, Zhengdi & Qu, Zifang & Bi, Qinsheng, 2020. "Qualitative analysis in a delayed Van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    2. Wenjie Hu & Hua Zhao & Tao Dong, 2018. "Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect," Complexity, Hindawi, vol. 2018, pages 1-11, January.
    3. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
    4. Giraud, Gaël & Grasselli, Matheus, 2021. "Household debt: The missing link between inequality and secular stagnation," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 901-927.
    5. Huang, Chengdai, 2018. "Multiple scales scheme for bifurcation in a delayed extended van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 643-652.
    6. Eva Kaslik & Mihaela Neamţu & Loredana Flavia Vesa, 2021. "Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay," Mathematics, MDPI, vol. 9(23), pages 1-15, November.
    7. Kaslik, Eva & Neamţu, Mihaela & Vesa, Loredana Flavia, 2021. "Global stability analysis of an unemployment model with distributed delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 535-546.
    8. Culda, Loredana Camelia & Kaslik, Eva & Neamţu, Mihaela, 2022. "Stability and bifurcations in a general Cournot duopoly model with distributed time delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:454:y:2023:i:c:s0096300323002692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.