IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v452y2023ics009630032300214x.html
   My bibliography  Save this article

Placing Two Edge-disjoint Copies of a Tree into a Bipartite Graph

Author

Listed:
  • Li, Hui
  • Gao, Yunshu

Abstract

We state that τ is an embedding of bipartite graph G(X0,X1) in the complete bipartite graph Bn(Y0,Y1) provided τ:V(G)→V(Bn), with σ(Xi)⊆Yi(i=0,1). Suppose that there are two embeddings of G in Bn such that both imagines under these two embeddings are edge-disjoint, we called that there is 2-packing of G in Bn. Let G(X1,X2) be a bipartite graph. For i=1,2, we use Δi to denote the maximum degree of the vertex in Xi. Let T(V1,V2) be a tree of order n with |V1|=a and |V2|=b. We demonstrate that if b≥a−1, there exists a 2-packing (σ,τ) of T in some Bn+1 such that Δ2(σ(T)∪τ(T))≤Δ2(T)+2. In general, Δ2(T)+2 can not be reduced to Δ2(T)+1, making this result sharp.

Suggested Citation

  • Li, Hui & Gao, Yunshu, 2023. "Placing Two Edge-disjoint Copies of a Tree into a Bipartite Graph," Applied Mathematics and Computation, Elsevier, vol. 452(C).
  • Handle: RePEc:eee:apmaco:v:452:y:2023:i:c:s009630032300214x
    DOI: 10.1016/j.amc.2023.128045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032300214X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:452:y:2023:i:c:s009630032300214x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.