IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v451y2023ics0096300323001972.html
   My bibliography  Save this article

Uniformly exponentially stable approximations for Timoshenko beams

Author

Listed:
  • Wang, Xiaofeng
  • Xue, Wenlong
  • He, Yong
  • Zheng, Fu

Abstract

In this note, Timoshenko beams with interior damping and boundary damping are studied from the viewpoints of control theory and numerical approximation. Especially, the uniform exponential stabilities of the beams are studied. The meaning of uniform exponential stability in this paper is two-fold: The first one is in the classical sense and also is concisely called exponential stability by many authors; The second one is that the semi-discretization systems, which are derived from an exponentially stable continuous beam by some semi-discretization schemes, are uniformly exponentially stable with respect to the discretized parameter. To investigate uniform exponential stability of continuous and discrete systems, five completely different methods, which are stability theory of port-Hamiltonian system, direct method of Lyapunov functional, perturbation theory of C0-semigroup, spectral analysis of unbounded operator and frequency standard of exponential stability for contractive semigroup, are involved. Especially, a new method, which is based on the frequency domain characteristics of uniform exponential stability of C0-semigroup of contractions, is established to verify the uniform exponential stability of semi-discretization systems derived from coupled system. The effectiveness of the numerical approximating algorithms is verified by numerical simulations.

Suggested Citation

  • Wang, Xiaofeng & Xue, Wenlong & He, Yong & Zheng, Fu, 2023. "Uniformly exponentially stable approximations for Timoshenko beams," Applied Mathematics and Computation, Elsevier, vol. 451(C).
  • Handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s0096300323001972
    DOI: 10.1016/j.amc.2023.128028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lal, Roshan & Dangi, Chinika, 2021. "Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen's nonlocal theory incorporating the surface effect," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelrahman, Alaa A. & Esen, Ismail & Eltaher, Mohamed A, 2021. "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    2. Jahangiri, M. & Asghari, M., 2023. "The strain gradient-based torsional vibration analysis of micro-rotors with nonlinear flexural-torsional coupling," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    3. Ma, Xiao & Zhou, Bo & Xue, Shifeng, 2022. "A Hermite interpolation element-free Galerkin method for functionally graded structures," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s0096300323001972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.