IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v451y2023ics0096300323001649.html
   My bibliography  Save this article

Gauss–Legendre polynomial basis for the shape control of polynomial curves

Author

Listed:
  • Moon, Hwan Pyo
  • Kim, Soo Hyun
  • Kwon, Song-Hwa

Abstract

The Gauss–Legendre (GL) polygon was recently introduced for the shape control of Pythagorean hodograph curves. In this paper, we consider the GL polygon of general polynomial curves. The GL polygon with n+1 control points determines a polynomial curve of degree n as a barycentric combination of the control points. We identify the weight functions of this barycentric combination and define the GL polynomials, which form a basis of the polynomial space like the Bernstein polynomial basis. We investigate various properties of the GL polynomials such as the partition of unity property, symmetry, endpoint interpolation, and the critical values in comparison with the Bernstein polynomials. We also present the definite integral and higher derivatives of the GL polynomials. We then discuss the shape control of polynomial curves using the GL polygon. We claim that the design process of high degree polynomial curves using the GL polygon is much easier and more predictable than if the curve is given in the Bernstein–Bézier form. This is supported by some neat illustrative examples.

Suggested Citation

  • Moon, Hwan Pyo & Kim, Soo Hyun & Kwon, Song-Hwa, 2023. "Gauss–Legendre polynomial basis for the shape control of polynomial curves," Applied Mathematics and Computation, Elsevier, vol. 451(C).
  • Handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s0096300323001649
    DOI: 10.1016/j.amc.2023.127995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s0096300323001649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.