IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v448y2023ics0096300323000759.html
   My bibliography  Save this article

Analysis of a higher order uniformly convergent method for singularly perturbed parabolic delay problems

Author

Listed:
  • Sharma, Amit
  • Rai, Pratima

Abstract

We develop and analyze a higher-order uniformly convergent method for time dependent parabolic singularly perturbed convection-diffusion (C-D) problems with space dependent delay. Due to the presence of delay, there occurs an interior layer along with a boundary layer in the solution of the considered problem. A Bakhvalov-Shishkin mesh in space direction and a uniform mesh in time direction is constructed to discretize the domain. Numerical approximation is composed of the classical upwind difference scheme for space variable and the implicit-Euler scheme for time variable. The proposed scheme is proved to have ε-uniform convergence of O(K−1+Δt), where K and Δt denote the number of mesh- intervals in space direction and the step size in time direction, respectively. We further apply the Richardson extrapolation and establish that the resulting scheme has ε-uniform convergence of O(K−2+(Δt)2). Numerical results on two test examples are provided to demonstrate the effectiveness of the scheme.

Suggested Citation

  • Sharma, Amit & Rai, Pratima, 2023. "Analysis of a higher order uniformly convergent method for singularly perturbed parabolic delay problems," Applied Mathematics and Computation, Elsevier, vol. 448(C).
  • Handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s0096300323000759
    DOI: 10.1016/j.amc.2023.127906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323000759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.K. Kadalbajoo & K.K. Sharma, 2002. "Numerical Analysis of Boundary-Value Problems for Singularly-Perturbed Differential-Difference Equations with Small Shifts of Mixed Type," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 145-163, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayşe Kurt & Salih Yalçınbaş & Mehmet Sezer, 2013. "Fibonacci Collocation Method for Solving High-Order Linear Fredholm Integro-Differential-Difference Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-9, August.
    2. Sabir, Zulqurnain & Wahab, Hafiz Abdul & Umar, Muhammad & Erdoğan, Fevzi, 2019. "Stochastic numerical approach for solving second order nonlinear singular functional differential equation," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Oğuz, Cem & Sezer, Mehmet, 2015. "Chelyshkov collocation method for a class of mixed functional integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 943-954.
    4. Gemechis File Duressa & Imiru Takele Daba & Chernet Tuge Deressa, 2023. "A Systematic Review on the Solution Methodology of Singularly Perturbed Differential Difference Equations," Mathematics, MDPI, vol. 11(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s0096300323000759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.