IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v442y2023ics0096300322008049.html
   My bibliography  Save this article

Szeged and Mostar root-indices of graphs

Author

Listed:
  • Brezovnik, Simon
  • Dehmer, Matthias
  • Tratnik, Niko
  • Žigert Pleteršek, Petra

Abstract

Various distance-based root-indices of graphs are introduced and studied in the present article. They are obtained as unique positive roots of modified graph polynomials. In particular, we consider the Szeged polynomial, the weighted-product Szeged polynomial, the weighted-plus Szeged polynomial, and the Mostar polynomial. We derive closed formulas of these polynomials for some basic families of graphs. Consequently, we provide closed formulas for some root-indices and examine the convergence of sequences of certain root-indices. Moreover, some general properties of studied root-indices are stated. Finally, numerical results related to discrimination power, correlations, structure sensitivity, and abruptness of root-indices are calculated, interpreted, and compared to already known similar descriptors.

Suggested Citation

  • Brezovnik, Simon & Dehmer, Matthias & Tratnik, Niko & Žigert Pleteršek, Petra, 2023. "Szeged and Mostar root-indices of graphs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322008049
    DOI: 10.1016/j.amc.2022.127736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322008049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehmer, Matthias & Emmert-Streib, Frank & Mowshowitz, Abbe & Ilić, Aleksandar & Chen, Zengqiang & Yu, Guihai & Feng, Lihua & Ghorbani, Modjtaba & Varmuza, Kurt & Tao, Jin, 2020. "Relations and bounds for the zeros of graph polynomials using vertex orbits," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    2. Ali, Akbar & Došlić, Tomislav, 2021. "Mostar index: Results and perspectives," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    3. Matthias Dehmer & Laurin A J Mueller & Armin Graber, 2010. "New Polynomial-Based Molecular Descriptors with Low Degeneracy," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-6, July.
    4. Dehmer, M. & Moosbrugger, M. & Shi, Y., 2015. "Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 164-168.
    5. Matthias Dehmer & Aleksandar Ilić, 2012. "Location of Zeros of Wiener and Distance Polynomials," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Knor & Niko Tratnik, 2023. "A New Alternative to Szeged, Mostar, and PI Polynomials—The SMP Polynomials," Mathematics, MDPI, vol. 11(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guorong & Deng, Kecai, 2023. "The maximum Mostar indices of unicyclic graphs with given diameter," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    2. Dehmer, Matthias & Chen, Zengqiang & Shi, Yongtang & Zhang, Yusen & Tripathi, Shailesh & Ghorbani, Modjtaba & Mowshowitz, Abbe & Emmert-Streib, Frank, 2019. "On efficient network similarity measures," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Alikhani, Saeid & Ghanbari, Nima, 2015. "Randić energy of specific graphs," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 722-730.
    4. Matthias Dehmer & Frank Emmert-Streib & Yongtang Shi & Monica Stefu & Shailesh Tripathi, 2015. "Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    5. Martin Knor & Niko Tratnik, 2023. "A New Alternative to Szeged, Mostar, and PI Polynomials—The SMP Polynomials," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    6. Dehmer, M. & Moosbrugger, M. & Shi, Y., 2015. "Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 164-168.
    7. Dehmer, Matthias & Emmert-Streib, Frank & Mowshowitz, Abbe & Ilić, Aleksandar & Chen, Zengqiang & Yu, Guihai & Feng, Lihua & Ghorbani, Modjtaba & Varmuza, Kurt & Tao, Jin, 2020. "Relations and bounds for the zeros of graph polynomials using vertex orbits," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    8. Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.
    9. Ghorbani, Modjtaba & Hakimi-Nezhaad, Mardjan & Dehmer, Matthias, 2022. "Novel results on partial hosoya polynomials: An application in chemistry," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    10. Dehmer, Matthias & Shi, Yongtang & Mowshowitz, Abbe, 2015. "Discrimination power of graph measures based on complex zeros of the partial Hosoya polynomial," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 352-355.
    11. Hui Wang & Mengmeng Liu, 2023. "The Upper Bound of the Edge Mostar Index with Respect to Bicyclic Graphs," Mathematics, MDPI, vol. 11(11), pages 1-8, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322008049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.