IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v442y2023ics0096300322007767.html
   My bibliography  Save this article

A hybrid classical-quantum algorithm for solution of nonlinear ordinary differential equations

Author

Listed:
  • Shukla, Alok
  • Vedula, Prakash

Abstract

A hybrid classical-quantum approach for the solution of nonlinear ordinary differential equations using Walsh-Hadamard basis functions is proposed. Central to this hybrid approach is the computation of the Walsh-Hadamard transform of arbitrary vectors, which is enabled in our framework using quantum Hadamard gates along with state preparation, shifting, scaling, and measurement operations. It is estimated that the proposed hybrid classical-quantum approach for the Walsh-Hadamard transform of an input vector of size N results in a considerably lower computational complexity (O(N) operations) compared to the Fast Walsh-Hadamard transform (O(Nlog2(N)) operations). This benefit will also be relevant in the context of the proposed hybrid classical-quantum approach for the solution of nonlinear differential equations. Comparisons of results corresponding to the proposed hybrid classical-quantum approach and a purely classical approach for the solution of nonlinear differential equations (for cases involving one and two dependent variables) were found to be satisfactory. Some new perspectives relevant to the natural ordering of Walsh functions (in the context of both classical and hybrid approaches for the solution of nonlinear differential equations) and the representation theory of finite groups are also presented here.

Suggested Citation

  • Shukla, Alok & Vedula, Prakash, 2023. "A hybrid classical-quantum algorithm for solution of nonlinear ordinary differential equations," Applied Mathematics and Computation, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007767
    DOI: 10.1016/j.amc.2022.127708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.