IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v442y2023ics0096300322007731.html
   My bibliography  Save this article

A stabilized FEM formulation with discontinuity-capturing for solving Burgers’-type equations at high Reynolds numbers

Author

Listed:
  • Cengizci, Süleyman
  • Uğur, Ömür

Abstract

This computational study is concerned with the numerical solutions of Burgers’-type equations at high Reynolds numbers. The high Reynolds numbers drive the nonlinearity to play an essential role and the equations to become more convection-dominated, which causes the solutions obtained with the standard numerical methods to involve spurious oscillations. To overcome this challenge, the Galerkin finite element formulation is stabilized by using the streamline-upwind/Petrov–Galerkin method. The stabilized formulation is further supplemented with YZβ shock-capturing to achieve better solution profiles around strong gradients. The nonlinear equation systems arising from the space and time discretizations are solved by using the Newton–Raphson (N–R) method at each time step. The resulting linearized equation systems are solved with the BiCGStab technique combined with ILU preconditioning at each N–R iteration. A comprehensive set of test examples is provided to demonstrate the robustness of the proposed formulation and the techniques used.

Suggested Citation

  • Cengizci, Süleyman & Uğur, Ömür, 2023. "A stabilized FEM formulation with discontinuity-capturing for solving Burgers’-type equations at high Reynolds numbers," Applied Mathematics and Computation, Elsevier, vol. 442(C).
  • Handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007731
    DOI: 10.1016/j.amc.2022.127705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gowrisankar, S. & Natesan, Srinivasan, 2019. "An efficient robust numerical method for singularly perturbed Burgers’ equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 385-394.
    2. Lai, Huilin & Ma, Changfeng, 2014. "A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 445-457.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qianhuan & Chai, Zhenhua & Shi, Baochang, 2015. "A novel lattice Boltzmann model for the coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 948-957.
    2. Park, Sangbeom & Kim, Philsu & Jeon, Yonghyeon & Bak, Soyoon, 2022. "An economical robust algorithm for solving 1D coupled Burgers’ equations in a semi-Lagrangian framework," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    3. Başhan, Ali, 2020. "A numerical treatment of the coupled viscous Burgers’ equation in the presence of very large Reynolds number," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Chen, Changkai & Zhang, Xiaohua & Liu, Zhang, 2020. "A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of n-dimensional Burgers’ system," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    5. Krivovichev, Gerasim V., 2018. "Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 102-119.
    6. Cui, Lijie & Lin, Chuandong, 2021. "A simple and efficient kinetic model for wealth distribution with saving propensity effect: Based on lattice gas automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.