Error analysis of a weak Galerkin finite element method for two-parameter singularly perturbed differential equations in the energy and balanced norms
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.127683
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- T. Valanarasu & N. Ramanujan, 2003. "Asymptotic Initial-Value Method for Singularly-Perturbed Boundary-Value Problems for Second-Order Ordinary Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 167-182, January.
- Surla, K. & Uzelac, Z. & Teofanov, Lj., 2009. "The discrete minimum principle for quadratic spline discretization of a singularly perturbed problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2490-2505.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- T. Valanarasu & N. Ramanujam, 2007. "Asymptotic Initial-Value Method for Second-Order Singular Perturbation Problems of Reaction-Diffusion Type with Discontinuous Source Term," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 371-383, June.
- Ahsan, Muhammad & Bohner, Martin & Ullah, Aizaz & Khan, Amir Ali & Ahmad, Sheraz, 2023. "A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 166-180.
- Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2022. "Higher-Order Asymptotic Numerical Solutions for Singularly Perturbed Problems with Variable Coefficients," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
More about this item
Keywords
Singularly perturbed boundary value problems; Two-parameter differential equations; Weak galerkin finite element method; Shishkin mesh; Uniform convergence; Balanced norm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:441:y:2023:i:c:s0096300322007512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.