IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v440y2023ics0096300322007263.html
   My bibliography  Save this article

A robust and efficient solver based on kinetic schemes for Magnetohydrodynamics (MHD) equations

Author

Listed:
  • Baty, Hubert
  • Drui, Florence
  • Helluy, Philippe
  • Franck, Emmanuel
  • Klingenberg, Christian
  • Thanhäuser, Lukas

Abstract

This paper is devoted to the simulation of compressible magnetohydrodynamic (MHD) flows with the Lattice Boltzmann Method (LBM). The usual LBM is limited to low-Mach flows. We propose a robust and accurate numerical method based on the vectorial kinetic construction of [5,25], which allows us to extend the LBM to arbitrary Mach flows. We also explain how to adjust the numerical viscosity in order to obtain stable and accurate results in smooth or discontinuous parts of the flow and reduced divergence errors. The method can handle shock waves and can be made second order in smooth regions. It is also very well adapted to computing with Graphics Processing Unit (GPU). Our GPU implementation in 2D achieves state-of-the-art accuracy, with near-optimal performance. We finally present numerical computations of a tilt instability that demonstrate the capability of the method to handle physically relevant simulations.

Suggested Citation

  • Baty, Hubert & Drui, Florence & Helluy, Philippe & Franck, Emmanuel & Klingenberg, Christian & Thanhäuser, Lukas, 2023. "A robust and efficient solver based on kinetic schemes for Magnetohydrodynamics (MHD) equations," Applied Mathematics and Computation, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007263
    DOI: 10.1016/j.amc.2022.127667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322007263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Otomo, Hiroshi & Boghosian, Bruce M. & Dubois, François, 2017. "Two complementary lattice-Boltzmann-based analyses for nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1000-1011.
    2. François Dubois, 2014. "Simulation of strong nonlinear waves with vectorial lattice Boltzmann schemes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(12), pages 1-9.
    3. Matej Špeťko & Ondřej Vysocký & Branislav Jansík & Lubomír Říha, 2021. "DGX-A100 Face to Face DGX-2—Performance, Power and Thermal Behavior Evaluation," Energies, MDPI, vol. 14(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    2. Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
    3. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    4. Yeoh, Chin Vern & Ooi, Ean Hin & Foo, Ji Jinn, 2021. "Utilization of pressure wave-dynamics in accelerating convergence of the lattice-Boltzmann method for steady and unsteady flows," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    5. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.