IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v439y2023ics0096300322006622.html
   My bibliography  Save this article

Weak Galerkin finite element method for linear elasticity interface problems

Author

Listed:
  • Peng, Hui
  • Wang, Ruishu
  • Wang, Xiuli
  • Zou, Yongkui

Abstract

In this paper, we apply a weak Galerkin finite element method to a linear elasticity interface model. Since the solution may become discontinuous while crossing the interface, we first discretize the model by double-valued weak functions on the interface. Then, in order to facilitate theoretical analysis and algorithm implementation, we substitute interface conditions into the weak Galerkin formulation and construct a weak Galerkin method with single-valued functions on the interface. Furthermore, we prove the well-posedness of the weak Galerkin scheme and derive a priori error estimates in energy norm and L2 norm. Finally, we present some numerical experiments to demonstrate the efficiency and the locking-free property of our method.

Suggested Citation

  • Peng, Hui & Wang, Ruishu & Wang, Xiuli & Zou, Yongkui, 2023. "Weak Galerkin finite element method for linear elasticity interface problems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
  • Handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322006622
    DOI: 10.1016/j.amc.2022.127589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322006622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Raman, 2024. "Numerical solutions for Biharmonic interface problems via weak Galerkin finite element methods," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322006622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.