IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v437y2023ics0096300322005811.html
   My bibliography  Save this article

A balanced norm error estimation for the time-dependent reaction-diffusion problem with shift in space

Author

Listed:
  • Brdar, Mirjana
  • Franz, Sebastian
  • Ludwig, Lars
  • Roos, Hans-Görg

Abstract

We consider a singularly perturbed time-dependent problem with a shift term in space. On appropriately defined layer adapted meshes of Durán- and S-type we derive a-priori error estimates for the stationary problem. Using a discontinuous Galerkin method in time we obtain error estimates for the full discretisation. Introduction of a weighted scalar products and norms allows us to estimate the error of the time-dependent problem in energy and balanced norm. So far it was open to prove such a result. Error estimates in the energy norm is for the standard finite element discretization in space, and for the error estimate in the balanced norm the computation of the numerical solution is changed by using a different bilinear form. Some numerical results are given to confirm the predicted theory and to show the effect of shifts on the solution.

Suggested Citation

  • Brdar, Mirjana & Franz, Sebastian & Ludwig, Lars & Roos, Hans-Görg, 2023. "A balanced norm error estimation for the time-dependent reaction-diffusion problem with shift in space," Applied Mathematics and Computation, Elsevier, vol. 437(C).
  • Handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322005811
    DOI: 10.1016/j.amc.2022.127507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322005811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Y. Glizer, 2000. "Asymptotic Solution of a Boundary-Value Problem for Linear Singularly-Perturbed Functional Differential Equations Arising in Optimal Control Theory," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 309-335, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahihi, Hussein & Abbasbandy, Saeid & Allahviranloo, Tofigh, 2019. "Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 583-598.
    2. V.Y. Glizer, 2003. "Asymptotic Analysis and Solution of a Finite-Horizon H ∞ Control Problem for Singularly-Perturbed Linear Systems with Small State Delay," Journal of Optimization Theory and Applications, Springer, vol. 117(2), pages 295-325, May.
    3. Gemechis File Duressa & Imiru Takele Daba & Chernet Tuge Deressa, 2023. "A Systematic Review on the Solution Methodology of Singularly Perturbed Differential Difference Equations," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    4. Chen, Shu-Bo & Soradi-Zeid, Samaneh & Dutta, Hemen & Mesrizadeh, Mehdi & Jahanshahi, Hadi & Chu, Yu-Ming, 2021. "Reproducing kernel Hilbert space method for nonlinear second order singularly perturbed boundary value problems with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322005811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.