IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v432y2022ics0096300322004441.html
   My bibliography  Save this article

On linear fractional differential equations with variable coefficients

Author

Listed:
  • Fernandez, Arran
  • Restrepo, Joel E.
  • Suragan, Durvudkhan

Abstract

We study and solve linear ordinary differential equations, with fractional order derivatives of either Riemann–Liouville or Caputo types, and with variable coefficients which are either integrable or continuous functions. In each case, the solution is given explicitly by a convergent infinite series involving compositions of fractional integrals, and its uniqueness is proved in suitable function spaces using the Banach fixed point theorem. As a special case, we consider the case of constant coefficients, whose solutions can be expressed by using the multivariate Mittag–Leffler function. Some illustrative examples with potential applications are provided.

Suggested Citation

  • Fernandez, Arran & Restrepo, Joel E. & Suragan, Durvudkhan, 2022. "On linear fractional differential equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 432(C).
  • Handle: RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004441
    DOI: 10.1016/j.amc.2022.127370
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322004441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baleanu, Dumitru & Restrepo, Joel E. & Suragan, Durvudkhan, 2021. "A class of time-fractional Dirac type operators," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Restrepo, Joel E. & Ruzhansky, Michael & Suragan, Durvudkhan, 2021. "Explicit solutions for linear variable–coefficient fractional differential equations with respect to functions," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
    2. Irgashev, B.Yu., 2023. "Initial boundary value problem for a high-order equation with two lines of degeneracy with the Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Restrepo, Joel E. & Suragan, Durvudkhan, 2021. "Hilfer-type fractional differential equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    3. Du, Feifei & Lu, Jun-Guo, 2021. "Explicit solutions and asymptotic behaviors of Caputo discrete fractional-order equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    4. Irgashev, B.Yu., 2023. "Initial boundary value problem for a high-order equation with two lines of degeneracy with the Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Zaky, M.A. & Hendy, A.S. & Suragan, D., 2022. "A note on a class of Caputo fractional differential equations with respect to another function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 289-295.
    6. Fahad, Hafiz Muhammad & Fernandez, Arran, 2021. "Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    7. Batabyal, Saikat & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2021. "Diffusion driven finite time blow-up and pattern formation in a mutualistic preys-sexually reproductive predator system: A comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:432:y:2022:i:c:s0096300322004441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.