IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v431y2022ics0096300322004210.html
   My bibliography  Save this article

Sixth-order quasi-compact difference schemes for 2D and 3D Helmholtz equations

Author

Listed:
  • Wang, Zhi
  • Ge, Yongbin
  • Sun, Hai-Wei
  • Sun, Tao

Abstract

Sixth-order quasi-compact difference (QCD) schemes are proposed for the two-dimensional (2D) and the three-dimensional (3D) Helmholtz equations with the variable parameter. Our approach provides the compact mesh stencil for the unknowns, while the noncompact mesh stencil is employed for the source term and the parameter function without involving their derivatives. For the proper interior grid points that are without adjoining the boundary, the sixth-order truncated errors are obtained by the QCD method. Yet the compact scheme is utilized for both of the source term and the parameter function on the improper interior grids that neighbor the boundary, which only reaches the fourth-order local truncated errors. Theoretically, the sixth-order accuracy of the global error by the proposed QCD method is strictly proved for the non-positive constant parameter. Numerical examples are given to demonstrate that the QCD method achieves the global sixth-order convergence for general variable parameters.

Suggested Citation

  • Wang, Zhi & Ge, Yongbin & Sun, Hai-Wei & Sun, Tao, 2022. "Sixth-order quasi-compact difference schemes for 2D and 3D Helmholtz equations," Applied Mathematics and Computation, Elsevier, vol. 431(C).
  • Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004210
    DOI: 10.1016/j.amc.2022.127347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322004210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322004210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.