IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v428y2022ics0096300322002776.html
   My bibliography  Save this article

Qualitative analysis on a reaction-diffusion model arising from population dynamics

Author

Listed:
  • Wang, Jingjing
  • Jia, Yunfeng
  • Li, Fangfang

Abstract

To maintain biodiversity and ecological balance, studying population dynamics of species by establishing different mathematical models is quite important. In this paper, we deal with a reaction-diffusion predation model with mixed functional responses. We are mainly concerned with the coexistence of the species. We firstly give the long-time behaviors of parabolic dynamical system. Secondly, we consider the steady state system, including the priori estimate, existence, uniqueness and asymptotic stability of positive solutions to the system. The result shows that the coexistence of the species depends to a great extent on their intrinsic growth rates, diffusion situations and the predation pressure imposed to preys by predators. The uniqueness and stability results show that the functional response has important effects on the model, which is mainly reflected by the predation behavior of predators. Finally, some numerical simulations are presented to illustrate the theoretical results.

Suggested Citation

  • Wang, Jingjing & Jia, Yunfeng & Li, Fangfang, 2022. "Qualitative analysis on a reaction-diffusion model arising from population dynamics," Applied Mathematics and Computation, Elsevier, vol. 428(C).
  • Handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002776
    DOI: 10.1016/j.amc.2022.127203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322002776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.