IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v425y2022ics0096300322001631.html
   My bibliography  Save this article

Boundary treatment of linear multistep methods for hyperbolic conservation laws

Author

Listed:
  • Zuo, Hujian
  • Zhao, Weifeng
  • Lin, Ping

Abstract

When using high-order schemes to solve hyperbolic conservation laws in bounded domains, it is necessary to properly treat boundary conditions so that the overall accuracy and stability are maintained. In [1, 2] a finite difference boundary treatment method is proposed for Runge-Kutta methods of hyperbolic conservation laws. The method combines an inverse Lax-Wendroff procedure and a WENO type extrapolation to achieve desired accuracy and stability. In this paper, we further develop the boundary treatment method for high-order linear multistep methods (LMMs) of hyperbolic conservation laws. We test the method through both 1D and 2D benchmark numerical examples for two third-order LMMs, one with a constant time step and the other with a variable time step. Numerical examples show expected high order accuracy and excellent stability. In addition, the approach in [3] may be adopted to deal with an exceptional case where eigenvalues of the flux Jacobian matrix change signs at the boundary. These results demonstrate that the combined boundary treatment method works very well for LMMs of hyperbolic conservation laws.

Suggested Citation

  • Zuo, Hujian & Zhao, Weifeng & Lin, Ping, 2022. "Boundary treatment of linear multistep methods for hyperbolic conservation laws," Applied Mathematics and Computation, Elsevier, vol. 425(C).
  • Handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001631
    DOI: 10.1016/j.amc.2022.127079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naumann, Alexander & Kolb, Oliver & Semplice, Matteo, 2018. "On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 252-270.
    2. Liu, X. & Zeng, Y.M., 2018. "Linear multistep methods for impulsive delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 555-563.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiuying & Li, Haixia & Wu, Boying, 2019. "Piecewise reproducing kernel method for linear impulsive delay differential equations with piecewise constant arguments," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 304-313.
    2. Zhang, Gui-Lai, 2022. "Convergence, consistency and zero stability of impulsive one-step numerical methods," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    3. Borsche, Raul & Eimer, Matthias & Siedow, Norbert, 2019. "A local time stepping method for thermal energy transport in district heating networks," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 215-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.