IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v425y2022ics0096300322001308.html
   My bibliography  Save this article

Computational multiscale method for parabolic wave approximations in heterogeneous media

Author

Listed:
  • Chung, Eric
  • Efendiev, Yalchin
  • Pun, Sai-Mang
  • Zhang, Zecheng

Abstract

In this paper, we develop a computational multiscale method to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that one wave propagation direction can be taken as an evolution direction, and one then can discretize it using a classical scheme like backward Euler method. Consequently, one obtains a set of quasi-gas-dynamic (QGD) models with possibly different heterogeneous permeability fields. For coarse discretization, we employ constraint energy minimization generalized multiscale finite element method (CEM-GMsFEM) to perform spatial model reduction. The resulting system can be solved by combining the central difference in time evolution. Due to the variable media, we apply the technique of proper orthogonal decomposition (POD) to further the dimension of the problem and solve the corresponding model problem in the POD space instead of in the whole multiscale space spanned by all possible multiscale basis functions. We prove the stability of the full discretization scheme and give the convergence analysis of the proposed approximation scheme. Numerical results verify the effectiveness of the proposed method.

Suggested Citation

  • Chung, Eric & Efendiev, Yalchin & Pun, Sai-Mang & Zhang, Zecheng, 2022. "Computational multiscale method for parabolic wave approximations in heterogeneous media," Applied Mathematics and Computation, Elsevier, vol. 425(C).
  • Handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001308
    DOI: 10.1016/j.amc.2022.127044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322001308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:425:y:2022:i:c:s0096300322001308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.