IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v422y2022ics0096300322000728.html
   My bibliography  Save this article

FFT bifurcation: A tool for spectrum analyzing of dynamical systems

Author

Listed:
  • Zandi-Mehran, Nazanin
  • Nazarimehr, Fahimeh
  • Rajagopal, Karthikeyan
  • Ghosh, Dibakar
  • Jafari, Sajad
  • Chen, Guanrong

Abstract

This paper presents FFT bifurcation as a tool for investigating complex dynamics. Firstly, two well-known chaotic systems (Rössler and Lorenz) are discussed from the frequency viewpoint. Then, both discrete-time and continuous-time systems are studied. Various systems with different properties are discussed. In discrete-time systems, Logistic map and a biological map are investigated. For continuous-time systems, a system with a stable equilibrium, forced van der Pol system, and a system with a line of equilibria are discussed. For each system under investigation, the proposed FFT bifurcation diagrams are compared with the conventional bifurcation diagrams, showing some interesting information uncovered by the FFT bifurcation. For periodic trajectories, the FFT bifurcations show high power at the dominant frequency and harmonics. By doubling the periods, their dominant frequencies are halved, and more harmonics emerge in the studied frequency intervals. For the chaotic dynamics, the FFT bifurcation shows a wideband power spectrum. The FFT bifurcation shows interesting results in comparison to conventional bifurcation diagrams.

Suggested Citation

  • Zandi-Mehran, Nazanin & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Ghosh, Dibakar & Jafari, Sajad & Chen, Guanrong, 2022. "FFT bifurcation: A tool for spectrum analyzing of dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 422(C).
  • Handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000728
    DOI: 10.1016/j.amc.2022.126986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.126986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panahi, Shirin & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C. & Perc, Matjaž & Repnik, Robert, 2021. "Optimal synchronization of circulant and non-circulant oscillators," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    2. Zonghua Liu, 2010. "Chaotic Time Series Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-31, April.
    3. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chafi, Mohammadreza Shafiee & Narm, Hossein Gholizade & Kalat, Ali Akbarzadeh, 2023. "Chaotic and stochastic evaluation in Fluxgate magnetic sensors," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Lampartová, Alžběta & Lampart, Marek, 2024. "Exploring diverse trajectory patterns in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Rajagopal, Karthikeyan & Karthikeyan, Anitha, 2022. "Spiral waves and their characterization through spatioperiod and spatioenergy under distinct excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Chuanhong & Liu, Licai & Zhang, Zhengping & Yu, Shixing, 2022. "A mem-element Wien-Bridge circuit with amplitude modulation and three kinds of offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    3. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Frantisek Kuda & Petr Dlask & Marek Teichmann & Vaclav Beran, 2022. "Time–Cost Schedules and Project–Threats Indication," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    5. Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    6. Ahmed A. Abd El-Latif & Janarthanan Ramadoss & Bassem Abd-El-Atty & Hany S. Khalifa & Fahimeh Nazarimehr, 2022. "A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    7. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Ding, Dawei & Xu, Xinyue & Yang, Zongli & Zhang, Hongwei & Zhu, Haifei & Liu, Tao, 2024. "Extreme multistability of fractional-order hyperchaotic system based on dual memristors and its implementation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.