A two-step stabilized finite element algorithm for the Smagorinsky model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2022.126971
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- An, Rong & Li, Yuan & Zhang, Yuqing, 2016. "Error estimates of two-level finite element method for Smagorinsky model," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 786-800.
- Zheng, Bo & Shang, Yueqiang, 2019. "Parallel iterative stabilized finite element algorithms based on the lowest equal-order elements for the stationary Navier–Stokes equations," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 35-56.
- Zheng, Bo & Shang, Yueqiang, 2020. "Local and parallel stabilized finite element algorithms based on the lowest equal-order elements for the steady Navier–Stokes equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 464-484.
- Shi, Dongyang & Li, Minghao & Li, Zhenzhen, 2019. "A nonconforming finite element method for the stationary Smagorinsky model," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 308-319.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Dongyang & Li, Minghao & Li, Zhenzhen, 2019. "A nonconforming finite element method for the stationary Smagorinsky model," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 308-319.
- Yuhan Wang & Peiyao Wang & Rongpei Zhang & Jia Liu, 2024. "Solution of the Elliptic Interface Problem by a Hybrid Mixed Finite Element Method," Mathematics, MDPI, vol. 12(12), pages 1-11, June.
- Zheng, Bo & Shang, Yueqiang, 2020. "A two-level stabilized quadratic equal-order finite element variational multiscale method for incompressible flows," Applied Mathematics and Computation, Elsevier, vol. 384(C).
- Zheng, Bo & Shang, Yueqiang, 2020. "Local and parallel stabilized finite element algorithms based on the lowest equal-order elements for the steady Navier–Stokes equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 464-484.
More about this item
Keywords
Smagorinsky model; Stabilized method; Two-step algorithm; Equal-order finite element;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000571. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.