IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v422y2022ics0096300322000534.html
   My bibliography  Save this article

Plug-and-Play gradient-based denoisers applied to CT image enhancement

Author

Listed:
  • Cascarano, Pasquale
  • Piccolomini, Elena Loli
  • Morotti, Elena
  • Sebastiani, Andrea

Abstract

Blur and noise corrupting Computed Tomography (CT) images can hide or distort small but important details, negatively affecting the consequent diagnosis. In this paper, we present a novel gradient-based Plug-and-Play (PnP) algorithm and we apply it to restore CT images. The plugged denoiser is implemented as a deep Convolutional Neural Network (CNN) trained on the gradient domain (and not on the image one, as in state-of-the-art works) and it induces an external prior onto the restoration model. We further consider a hybrid scheme which combines the gradient-based external denoiser with an internal one, obtained from the Total Variation functional. The proposed frameworks rely on the Half-Quadratic Splitting scheme and we prove a general fixed-point convergence theorem, under weak assumptions on both the denoisers. The experiments confirm the effectiveness of the proposed gradient-based approach in restoring blurred noisy CT images, both in simulated and real medical settings. The obtained performances outperform the achievements of many state-of-the-art methods.

Suggested Citation

  • Cascarano, Pasquale & Piccolomini, Elena Loli & Morotti, Elena & Sebastiani, Andrea, 2022. "Plug-and-Play gradient-based denoisers applied to CT image enhancement," Applied Mathematics and Computation, Elsevier, vol. 422(C).
  • Handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000534
    DOI: 10.1016/j.amc.2022.126967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.126967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuyuan Zhang & Yu Han & Sien Lin & Chen Xu, 2023. "A Fuzzy Plug-and-Play Neural Network-Based Convex Shape Image Segmentation Method," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    2. Wang, Jian & Han, Ziwei & Jiang, Wenjing & Kim, Junseok, 2023. "A fast, efficient, and explicit phase-field model for 3D mesh denoising," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:422:y:2022:i:c:s0096300322000534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.