IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v420y2022ics0096300321009760.html
   My bibliography  Save this article

Novel weighted essentially non-oscillatory schemes with adaptive weights

Author

Listed:
  • Tang, Shujiang
  • Feng, Yujie
  • Li, Mingjun

Abstract

In this paper, by constructing a selector that can identify the less-smooth sub-stencils, we have improved the classical WENO-JS and WENO-Z schemes, and developed two new WENO schemes which can adaptively increase the weight of less-smooth sub-stencils, WENO-IJS and WENO-IZ. Theoretical analysis shows that the present schemes maintain essentially non-oscillatory (ENO) property and have lower numerical dissipation at discontinuities. The investigation of approximate dispersion relation analysis (ADR) shows that the spectral characteristics of the present schemes are better than those of the classical WENO-JS, WENO-Z and WENO-Z+ schemes. A series of numerical experiments show that the shock wave capture capability and resolution of the complex process structure of the present schemes are significantly better than WENO-JS, WENO-Z and WENO-Z+.

Suggested Citation

  • Tang, Shujiang & Feng, Yujie & Li, Mingjun, 2022. "Novel weighted essentially non-oscillatory schemes with adaptive weights," Applied Mathematics and Computation, Elsevier, vol. 420(C).
  • Handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009760
    DOI: 10.1016/j.amc.2021.126893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321009760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Hui & Huang, Cong & Wang, Rong, 2014. "An improved mapped weighted essentially non-oscillatory scheme," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 453-468.
    2. Hu, Fuxing, 2021. "A note on WENO-Z scheme," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajipour, Mojtaba & Jajarmi, Amin & Malek, Alaeddin & Baleanu, Dumitru, 2018. "Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 146-158.
    2. Huang, Cong, 2016. "WENO scheme with new smoothness indicator for Hamilton–Jacobi equation," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 21-32.
    3. Ruo Li & Wei Zhong, 2022. "An Improved Component-Wise WENO-NIP Scheme for Euler System," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    4. Huang, Cong & Chen, Li Li, 2021. "A simple WENO-AO method for solving hyperbolic conservation laws," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    5. Zhang, Xin & Huang, Lintao & Qin, Xueyu & Qu, Feng & Yan, Chao, 2023. "An efficient finite difference IFWENO-THINC hybrid scheme for capturing discontinuities," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    6. Katta, Kiran K. & Nair, Ramachandran D. & Kumar, Vinod, 2015. "High-order finite volume shallow water model on the cubed-sphere: 1D reconstruction scheme," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 316-327.
    7. Li, Ruo & Zhong, Wei, 2023. "A robust and efficient component-wise WENO scheme for Euler equations," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321009760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.