IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v420y2022ics0096300321006457.html
   My bibliography  Save this article

Full state approximation by Galerkin projection reduced order models for stochastic and bilinear systems

Author

Listed:
  • Redmann, Martin
  • Duff, Igor Pontes

Abstract

In this paper, the problem of full state approximation by model reduction is studied for stochastic and bilinear systems. Our proposed approach relies on identifying the dominant subspaces based on the reachability Gramian of a system. Once the desired subspace is computed, the reduced order model is then obtained by a Galerkin projection. We prove that, in the stochastic case, this approach either preserves mean square asymptotic stability or leads to reduced models whose minimal realization is mean square asymptotically stable. This stability preservation guarantees the existence of the reduced system reachability Gramian which is the basis for the full state error bounds that we derive. This error bound depends on the neglected eigenvalues of the reachability Gramian and hence shows that these values are a good indicator for the expected error in the dimension reduction procedure. Subsequently, we establish the stability preservation result and the error bound for a full state approximation to bilinear systems in a similar manner. These latter results are based on a recently proved link between stochastic and bilinear systems. We conclude the paper by numerical experiments using a benchmark problem. We compare this approach with balanced truncation and show that it performs well in reproducing the full state of the system.

Suggested Citation

  • Redmann, Martin & Duff, Igor Pontes, 2022. "Full state approximation by Galerkin projection reduced order models for stochastic and bilinear systems," Applied Mathematics and Computation, Elsevier, vol. 420(C).
  • Handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321006457
    DOI: 10.1016/j.amc.2021.126561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Redmann, Martin & Freitag, Melina A., 2021. "Optimization based model order reduction for stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:420:y:2022:i:c:s0096300321006457. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.