IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v417y2022ics0096300321008560.html
   My bibliography  Save this article

A power series analysis of bound and resonance states of one-dimensional Schrödinger operators with finite point interactions

Author

Listed:
  • Barrera-Figueroa, Víctor

Abstract

In this paper we consider one-dimensional Schrödinger operatorsSqu(x)=(−d2dx2+qr(x)+qs(x))u(x),x∈R,where qr∈L∞(R) is a regular potential with compact support, and qs∈D′(R) is a singular potentialqs(x)=∑j=1N(αjδ(x−xj)+βjδ′(x−xj)),αj,βj∈Cthat involves a finite number of point interactions. The eigenenergies associated to the bound states and the complex energies associated to the resonance states of operator Sq are given by the zeros of certain characteristic functions η± that share the same structure up to an algebraic sign. The functions η± are obtained explicitly in the form of power series of the spectral parameter, and the computation of the coefficients of the series is given by a recursive integration procedure. The results here presented are general enough to consider arbitrary regular potentials qr∈L∞(R) with compact support, even complex-valued, and point interactions with complex strengths αj,βj (j=1,…,N). Moreover, our approach leads to an efficient numerical treatment of both the bound and resonance states.

Suggested Citation

  • Barrera-Figueroa, Víctor, 2022. "A power series analysis of bound and resonance states of one-dimensional Schrödinger operators with finite point interactions," Applied Mathematics and Computation, Elsevier, vol. 417(C).
  • Handle: RePEc:eee:apmaco:v:417:y:2022:i:c:s0096300321008560
    DOI: 10.1016/j.amc.2021.126774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:417:y:2022:i:c:s0096300321008560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.