IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v416y2022ics0096300321008109.html
   My bibliography  Save this article

A fast algorithm for fractional Helmholtz equation with application to electromagnetic waves propagation

Author

Listed:
  • Belevtsov, Nikita S.
  • Lukashchuk, Stanislav Yu.

Abstract

A fractional Helmholtz equation with the fractional Laplacian is investigated. Fundamental solutions of this equation and their factorized representations in terms of H-functions are constructed using Fourier and Mellin integral transforms. Multipole expansion for integral representation of the fractional Helmholtz equation’s solution is derived. A technique for evaluating H-functions from the multipole expansion is proposed. A modification of the multipole method for solving considered equation is developed. Numerical results demonstrating high efficiency of the proposed approach are presented. A fractional generalization of the mathematical model for a plane polarized electromagnetic wave propagation in the inhomogeneous medium, leading to a fractional Helmholtz equation with the fractional Laplacian, is derived and investigated using the proposed algorithm.

Suggested Citation

  • Belevtsov, Nikita S. & Lukashchuk, Stanislav Yu., 2022. "A fast algorithm for fractional Helmholtz equation with application to electromagnetic waves propagation," Applied Mathematics and Computation, Elsevier, vol. 416(C).
  • Handle: RePEc:eee:apmaco:v:416:y:2022:i:c:s0096300321008109
    DOI: 10.1016/j.amc.2021.126728
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:416:y:2022:i:c:s0096300321008109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.