IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v415y2022ics0096300321008006.html
   My bibliography  Save this article

Storing, learning and retrieving biased patterns

Author

Listed:
  • Agliari, Elena
  • Leonelli, Francesca Elisa
  • Marullo, Chiara

Abstract

The formal equivalence between the Hopfield network (HN) and the Boltzmann Machine (BM) has been well established in the context of random, unstructured and unbiased patterns to be retrieved and recognised. Here we extend this equivalence to the case of “biased” patterns, that is patterns which display an unbalanced count of positive neurons/pixels: starting from previous results of the bias paradigm for the HN, we construct the BM’s equivalent Hamiltonian introducing a constraint parameter for the bias correction. We show analytically and numerically that the parameters suggested by equivalence are fixed points under contrastive divergence evolution when exposed to a dataset of blurred examples of each pattern, also enjoying large basins of attraction when the model suffers of a noisy initialisation. These results are also shown to be robust against increasing storage of the models, and increasing bias in the reference patterns. This picture, together with analytical derivation of HN’s phase diagram via self-consistency equations, allows us to enhance our mathematical control on BM’s performance when approaching more realistic datasets.

Suggested Citation

  • Agliari, Elena & Leonelli, Francesca Elisa & Marullo, Chiara, 2022. "Storing, learning and retrieving biased patterns," Applied Mathematics and Computation, Elsevier, vol. 415(C).
  • Handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321008006
    DOI: 10.1016/j.amc.2021.126716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321008006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alemanno, Francesco & Camanzi, Luca & Manzan, Gianluca & Tantari, Daniele, 2023. "Hopfield model with planted patterns: A teacher-student self-supervised learning model," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:415:y:2022:i:c:s0096300321008006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.