IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v414y2022ics0096300321007487.html
   My bibliography  Save this article

Fault detection and isolation of actuator failures in jet engines using adaptive dynamic programming

Author

Listed:
  • Kang, Haobo
  • Ma, Hongjun

Abstract

This paper presents a adaptive dynamic programming-based fault detection and isolation (FDI) scheme to detect and isolate faults in an aircraft jet engine. To this end, the weights in Actor-Critic neural networks are first tuned to learn the input-output map of the jet engine considering its multiple working modes. The convergences of the trainings in Critic-Actor neural networks are strictly proved without knowing the drift dynamics and the input dynamics in the presence of unknown nonlinearities and approximation errors. Using the residuals that are generated by measuring the difference of each network output and the measured engine output, various criteria are established for accomplishing the fault diagnosis task, that addresses the problem of fault detection and isolation of the system components. A number of simulation studies are carried out for combustion chamber of a single-spool jet engine to demonstrate and illustrate the advantages, capabilities, and performance of our proposed fault diagnosis scheme.

Suggested Citation

  • Kang, Haobo & Ma, Hongjun, 2022. "Fault detection and isolation of actuator failures in jet engines using adaptive dynamic programming," Applied Mathematics and Computation, Elsevier, vol. 414(C).
  • Handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007487
    DOI: 10.1016/j.amc.2021.126664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321007487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen Yin & Xuebo Yang & Hamid Reza Karimi, 2012. "Data-Driven Adaptive Observer for Fault Diagnosis," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
    2. Gao, Ming & Niu, Yichun & Sheng, Li & Zhou, Donghua, 2022. "Quantitative analysis of incipient fault detectability for time-varying stochastic systems based on weighted moving average approach," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:414:y:2022:i:c:s0096300321007487. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.