IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v412y2022ics0096300321006640.html
   My bibliography  Save this article

A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation

Author

Listed:
  • Qin, Hongyu
  • Wu, Fengyan
  • Ding, Deng

Abstract

We develop a linearized compact alternating direction implicit (ADI) numerical method to solve the nonlinear delayed Schrödinger equation in two-dimensional space. By discrete energy estimate method, we analyse the convergence of the fully-discrete numerical method, and show that the numerical scheme is of order O(Δt2+h4) with time stepsize Δt and space stepsize h. At last, we present several numerical examples to confirm theoretical analyses.

Suggested Citation

  • Qin, Hongyu & Wu, Fengyan & Ding, Deng, 2022. "A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 412(C).
  • Handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006640
    DOI: 10.1016/j.amc.2021.126580
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qifeng & Chen, Mengzhe & Xu, Yinghong & Xu, Dinghua, 2018. "Compact θ-method for the generalized delay diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 357-369.
    2. Zou, Guang-an & Wang, Bo & Sheu, Tony W.H., 2020. "On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrödinger equation with fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 122-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Hongyu & Zhang, Qifeng & Wan, Shaohua, 2019. "The continuous Galerkin finite element methods for linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 76-85.
    2. Ran, Maohua & Luo, Taibai & Zhang, Li, 2019. "Unconditionally stable compact theta schemes for solving the linear and semi-linear fourth-order diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 118-129.
    3. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    4. Jian, Huan-Yan & Huang, Ting-Zhu & Ostermann, Alexander & Gu, Xian-Ming & Zhao, Yong-Liang, 2021. "Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods," Applied Mathematics and Computation, Elsevier, vol. 408(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:412:y:2022:i:c:s0096300321006640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.