IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v405y2021ics0096300321003398.html
   My bibliography  Save this article

Orbital stability of dn periodic solutions for the generalized symmetric regularized-long-wave equation

Author

Listed:
  • Ling, Xing-qian
  • Zhang, Wei-guo

Abstract

In this paper, the orbital stability of dn periodic solutions for the generalized symmetric regularized-long-wave equation with two nonlinear terms is investigated. First, the existence of dn periodic solution to the equation is obtained. Then, according to the Floquet theory and Lame equation, the spectral properties of corresponding linear operators are given. Last, according to the classical theory of stability, the orbital stability of the dn periodic solution for the generalized symmetric regularized-long-wave equation is proved to be stable under the perturbation of period L.

Suggested Citation

  • Ling, Xing-qian & Zhang, Wei-guo, 2021. "Orbital stability of dn periodic solutions for the generalized symmetric regularized-long-wave equation," Applied Mathematics and Computation, Elsevier, vol. 405(C).
  • Handle: RePEc:eee:apmaco:v:405:y:2021:i:c:s0096300321003398
    DOI: 10.1016/j.amc.2021.126249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:405:y:2021:i:c:s0096300321003398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.