IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v403y2021ics0096300321001442.html
   My bibliography  Save this article

Invariant multiscale triangle feature for shape recognition

Author

Listed:
  • Yang, Chengzhuan
  • Yu, Qian

Abstract

Shape is an important visual characteristic in representing an object, and it is also an important part of human visual information. Shape recognition is an important research direction in pattern recognition and image understanding. However, it is a difficult problem to extract discriminative and robust shape descriptors in shape recognition. This is because there are very large deformations in the shape, such as geometric changes, intra-class variations, and nonlinear deformations. These factors directly influence the accuracy of shape recognition. To deal with the influence of these factors on the performance of shape recognition and enhance the accuracy of recognition, we present a novel shape description method called invariant multiscale triangle feature (IMTF) for robust shape recognition. This method uses two types of invariant triangle features to obtain the shape features of an object, and it can effectively combine the boundary and the interior characteristics of a shape, and hence can increase the distinguish ability of the shape. We conducted an extensive experimental analysis on some shape benchmarks. The results indicate that our method can achieve high recognition accuracy. The superiority of our method has been further demonstrated in comparison to the state-of-the-art shape descriptors.

Suggested Citation

  • Yang, Chengzhuan & Yu, Qian, 2021. "Invariant multiscale triangle feature for shape recognition," Applied Mathematics and Computation, Elsevier, vol. 403(C).
  • Handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321001442
    DOI: 10.1016/j.amc.2021.126096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321001442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.