IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v400y2021ics0096300321001302.html
   My bibliography  Save this article

Locating eigenvalues of unbalanced unicyclic signed graphs

Author

Listed:
  • Belardo, Francesco
  • Brunetti, Maurizio
  • Trevisan, Vilmar

Abstract

A signed graph is a pair Γ=(G,σ), where G is a graph, and σ:E(G)⟶{+1,−1} is a signature of the edges of G. A signed graph Γ is said to be unbalanced if there exists a cycle in Γ with an odd number of negatively signed edges. In this paper it is presented a linear time algorithm which computes the inertia indices of an unbalanced unicyclic signed graph. Additionally, the algorithm computes the number of eigenvalues in a given real interval by operating directly on the graph, so that the adjacency matrix is not needed explicitly. As an application, the algorithm is employed to check the integrality of some infinite families of unbalanced unicyclic graphs. In particular, the multiplicities of eigenvalues of signed circular caterpillars are studied, getting a geometric characterization of those which are non-singular and sufficient conditions for them to be non-integral. Finally, the algorithm is also used to retrieve the spectrum of bidegreed signed circular caterpillars, none of which turns out to be integral.

Suggested Citation

  • Belardo, Francesco & Brunetti, Maurizio & Trevisan, Vilmar, 2021. "Locating eigenvalues of unbalanced unicyclic signed graphs," Applied Mathematics and Computation, Elsevier, vol. 400(C).
  • Handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001302
    DOI: 10.1016/j.amc.2021.126082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Zhenan & Yuan, Xiying, 2022. "Some signed graphs whose eigenvalues are main," Applied Mathematics and Computation, Elsevier, vol. 423(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.