IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v400y2021ics0096300321000278.html
   My bibliography  Save this article

An accuracy-preserving numerical scheme for parabolic partial differential equations subject to discontinuities in boundary conditions

Author

Listed:
  • Mitchell, S.L.
  • Vynnycky, M.

Abstract

In this paper, we develop a method to alleviate the loss of accuracy that occurs when parabolic partial differential equations (PDEs), subject to discontinuous boundary conditions, are solved numerically. Employing the Keller box finite-difference method, we consider a benchmark case involving the linear one-dimensional transient heat equation, subject to discontinuous heat flux at one of the boundaries. The method we develop constitutes an improvement on earlier work which involved dropping a spatial grid point at each time step; moreover, we demonstrate that our new approach is able to maintain second-order accuracy for the solution and the numerical scheme, whereas it is in general not even possible to calculate the accuracy for either using the earlier approach. Furthermore, our method can also be used in principle for discontinuities in non-linear steady-state boundary-layer problems, such as those that occur in fluid mechanics and electrochemistry; some examples of these are given.

Suggested Citation

  • Mitchell, S.L. & Vynnycky, M., 2021. "An accuracy-preserving numerical scheme for parabolic partial differential equations subject to discontinuities in boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 400(C).
  • Handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321000278
    DOI: 10.1016/j.amc.2021.125979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321000278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.125979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vynnycky, M., 2023. "On boundary immobilization for one-dimensional Stefan-type problems with a moving boundary having initially parabolic-logarithmic behaviour," Applied Mathematics and Computation, Elsevier, vol. 444(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321000278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.