IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v399y2021ics0096300321000448.html
   My bibliography  Save this article

Efficient recursive least squares solver for rank-deficient matrices

Author

Listed:
  • Staub, Ruben
  • Steinmann, Stephan N.

Abstract

Updating a linear least-squares solution can be critical for near real-time signal-processing applications. The Greville algorithm proposes a simple formula for updating the pseudoinverse of a matrix A∈Rn×m with rank r. In this paper, we explicitly derive a similar formula by maintaining a general rank factorization, which we call rank-Greville. Based on this formula, we implemented a recursive least-squares algorithm exploiting the rank-deficiency of A, achieving the update of the minimum-norm least-squares solution in O(mr) operations and, therefore, solving the linear least-squares problem from scratch in O(nmr) operations. We empirically confirmed that this algorithm displays a better asymptotic time complexity than LAPACK solvers for rank-deficient matrices. The numerical stability of rank-Greville was found to be comparable to Cholesky-based solvers. Nonetheless, our implementation supports exact numerical representations of rationals, due to its remarkable algebraic simplicity.

Suggested Citation

  • Staub, Ruben & Steinmann, Stephan N., 2021. "Efficient recursive least squares solver for rank-deficient matrices," Applied Mathematics and Computation, Elsevier, vol. 399(C).
  • Handle: RePEc:eee:apmaco:v:399:y:2021:i:c:s0096300321000448
    DOI: 10.1016/j.amc.2021.125996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321000448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.125996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:399:y:2021:i:c:s0096300321000448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.