IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v398y2021ics0096300321000400.html
   My bibliography  Save this article

New S-type inclusion theorems for the M-eigenvalues of a 4th-order partially symmetric tensor with applications

Author

Listed:
  • He, Jun
  • Liu, Yanmin
  • Xu, Guangjun

Abstract

Two new S-type inclusion theorems for the M-eigenvalues of a 4th-order partially symmetric tensor are established. These inclusion theorems provide upper bounds for the M-spectral radius of 4th-order partially symmetric tensors. Finally, the M-positive definiteness for 4th-order partially symmetric tensors are further studied and two sufficient conditions are also presented based on the two new S-type M-eigenvalue inclusion theorems.

Suggested Citation

  • He, Jun & Liu, Yanmin & Xu, Guangjun, 2021. "New S-type inclusion theorems for the M-eigenvalues of a 4th-order partially symmetric tensor with applications," Applied Mathematics and Computation, Elsevier, vol. 398(C).
  • Handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000400
    DOI: 10.1016/j.amc.2021.125992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321000400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.125992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jianxing, 2023. "Conditions of strong ellipticity and calculations of M-eigenvalues for a partially symmetric tensor," Applied Mathematics and Computation, Elsevier, vol. 458(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.