IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v395y2021ics0096300320308298.html
   My bibliography  Save this article

Lexicographic derivatives of nonsmooth glucose-insulin kinetics under normal and artificial pancreatic responses

Author

Listed:
  • Ackley, Matthew
  • Stechlinski, Peter

Abstract

Parametric sensitivities of nonsmooth glucose-insulin kinetics models are investigated in this article. In particular, we study several variations on a model of the so-called Intravenous Glucose Tolerance Test (IVGTT), which measures a subject’s insulin response to glucose over time and yields data useful for characterizing and diagnosing diabetes. Nonsmoothness refers here to continuous behavior that is punctuated by “switches” (physiological events) arising due to biochemical and control thresholds being crossed. Insulin secretion from a typical pancreatic response and insulin infusion from an external device (for diabetic patients) are both considered here. The presence of nonsmoothness means that classical sensitivity theory and associated numerical methods are ill-equipped to handle these models. Motivated by this, lexicographic directional differentiation and lexicographic “sensitivity functions” are used, which are recently developed tools in nonsmooth analysis. Using this new approach, we derive nonsmooth sensitivity systems associated with the considered glucose kinetics models, whose unique solutions provide local sensitivity information analogous to classical forward parametric sensitivity functions. Moreover, the theory is practically implementable and the resulting sensitivity functions are computationally relevant, as they can be supplied to dedicated nonsmooth numerical methods (e.g., optimization). The nonsmooth sensitivity systems are solved numerically, giving new insights into the model, and thus into the dynamics of glucose kinetics under the simulated conditions. It is hoped that the results here may be used to improve the design of assessments for diabetes (e.g., the IVGTT) and its treatment.

Suggested Citation

  • Ackley, Matthew & Stechlinski, Peter, 2021. "Lexicographic derivatives of nonsmooth glucose-insulin kinetics under normal and artificial pancreatic responses," Applied Mathematics and Computation, Elsevier, vol. 395(C).
  • Handle: RePEc:eee:apmaco:v:395:y:2021:i:c:s0096300320308298
    DOI: 10.1016/j.amc.2020.125876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320308298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    2. NESTEROV, Yu., 2005. "Lexicographic differentiation of nonsmooth functions," LIDAM Reprints CORE 1817, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Peter G. Stechlinski & Paul I. Barton, 2016. "Generalized Derivatives of Differential–Algebraic Equations," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Stechlinski, 2020. "Optimization-Constrained Differential Equations with Active Set Changes," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 266-293, October.
    2. Jose Alberto Gomez & Kai Höffner & Kamil A. Khan & Paul I. Barton, 2018. "Generalized Derivatives of Lexicographic Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 477-501, August.
    3. Peter G. Stechlinski & Paul I. Barton, 2016. "Generalized Derivatives of Differential–Algebraic Equations," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 1-26, October.
    4. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    5. Vikse, Matias & Watson, Harry A.J. & Kim, Donghoi & Barton, Paul I. & Gundersen, Truls, 2020. "Optimization of a dual mixed refrigerant process using a nonsmooth approach," Energy, Elsevier, vol. 196(C).
    6. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    7. Watson, Harry A.J. & Vikse, Matias & Gundersen, Truls & Barton, Paul I., 2018. "Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models," Energy, Elsevier, vol. 150(C), pages 860-876.
    8. NESTEROV, Yurii, 2011. "Random gradient-free minimization of convex functions," LIDAM Discussion Papers CORE 2011001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. George Baravdish & Gabriel Eilertsen & Rym Jaroudi & B. Tomas Johansson & Lukáš Malý & Jonas Unger, 2024. "A Hybrid Sobolev Gradient Method for Learning NODEs," SN Operations Research Forum, Springer, vol. 5(4), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:395:y:2021:i:c:s0096300320308298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.