IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v394y2021ics0096300320307736.html
   My bibliography  Save this article

High-order well-balanced methods for systems of balance laws: a control-based approach

Author

Listed:
  • Gómez-Bueno, Irene
  • Castro, Manuel J.
  • Parés, Carlos

Abstract

In some previous works, two of the authors have introduced a strategy to develop high-order numerical methods for systems of balance laws that preserve all the stationary solutions of the system. The key ingredient of these methods is a well-balanced reconstruction operator. A strategy has been also introduced to modify any standard reconstruction operator like MUSCL, ENO, CWENO, etc. in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. So far this strategy has been only applied to systems whose stationary solution are known either in explicit or implicit form. The goal of this paper is to present a general implementation of this technique that can be applied to any system of balance laws. To do this, the nonlinear problems to be solved in the reconstruction procedure are interpreted as control problems: they consist in finding a solution of an ODE system whose average at the computation interval is given. These problems are written in functional form and the gradient of the functional is computed on the basis of the adjoint problem. Newton’s method is applied then to solve the problems. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. To test their efficiency and well-balancedness, the methods are applied to a number of systems of balance laws, ranging from easy academic systems consisting of Burgers equation with some nonlinear source terms to the shallow water equations or Euler equations of gas dynamics with gravity effects.

Suggested Citation

  • Gómez-Bueno, Irene & Castro, Manuel J. & Parés, Carlos, 2021. "High-order well-balanced methods for systems of balance laws: a control-based approach," Applied Mathematics and Computation, Elsevier, vol. 394(C).
  • Handle: RePEc:eee:apmaco:v:394:y:2021:i:c:s0096300320307736
    DOI: 10.1016/j.amc.2020.125820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320307736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlino, Michele Giuliano & Gaburro, Elena, 2023. "Well balanced finite volume schemes for shallow water equations on manifolds," Applied Mathematics and Computation, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:394:y:2021:i:c:s0096300320307736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.