IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v393y2021ics0096300320307116.html
   My bibliography  Save this article

Isogeometric symmetric FE-BE coupling method for acoustic-structural interaction

Author

Listed:
  • Wu, Y.H.
  • Dong, C.Y.
  • Yang, H.S.
  • Sun, F.L.

Abstract

The problems of Acoustic-Structural Interaction (ASI) are commonly encountered in the simulation of the thin-walled structures immersed in the fluid. This interaction can affect the acoustic properties of the fluid and the dynamic characteristics of the structure. In this paper, a Non-Uniform Rational B-Splines (NURBS)-based Isogeometric Finite Element (FE) - Boundary Element (BE) symmetric coupling method is developed to study the ASI problems and the free vibration of the elastic structures submerged in the fluid. The geometry of the thin-walled structures is exactly modelled and discretized by utilizing the Isogeometric Reissner-Mindlin shell elements. This shell theory simplifies the continuity enforcement between NURBS patch boundaries. The Isogeometric Boundary Element Method (IGABEM) is applied to describe the acoustic field. In order to impose coupling constraints, a transformation equation of unknown variables on the interface between sound field and structure field is established, that is, sound pressure versus external force and particle velocity versus displacement. Different from the non-symmetric matrix obtained by the traditional direct BEM, a new variational formulation is introduced to obtain the symmetric coupling coefficient matrix, which maks this coupling approach suitable for a broad class of solvers and improves the robustness of the computation. The reliability and stability of the symmetric coupling method are verified by numerical examples considering acoustic and structural loadings. It is concluded that the symmetric coupling method possesses high accuracy, and can circumvent the limitation of traditional coupling method in solving open boundary problems.

Suggested Citation

  • Wu, Y.H. & Dong, C.Y. & Yang, H.S. & Sun, F.L., 2021. "Isogeometric symmetric FE-BE coupling method for acoustic-structural interaction," Applied Mathematics and Computation, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:apmaco:v:393:y:2021:i:c:s0096300320307116
    DOI: 10.1016/j.amc.2020.125758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320307116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:393:y:2021:i:c:s0096300320307116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.