IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v392y2021ics0096300320306366.html
   My bibliography  Save this article

On the maximum size of stepwise irregular graphs

Author

Listed:
  • Buyantogtokh, Lkhagva
  • Azjargal, Enkhbayar
  • Horoldagva, Batmend
  • Dorjsembe, Shiikhar
  • Adiyanyam, Damchaa

Abstract

Recently, Gutman introduced the class of stepwise irregular graphs and studied their properties. A graph is stepwise irregular if the difference between the degrees of any two adjacent vertices is exactly one. In this paper, we get some upper bounds on the maximum degree and sharp upper bounds on the size of stepwise irregular graphs. Furthermore, we completely characterize the graphs with maximum size among all connected stepwise irregular graphs of the given order.

Suggested Citation

  • Buyantogtokh, Lkhagva & Azjargal, Enkhbayar & Horoldagva, Batmend & Dorjsembe, Shiikhar & Adiyanyam, Damchaa, 2021. "On the maximum size of stepwise irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306366
    DOI: 10.1016/j.amc.2020.125683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320306366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Kecai & Li, Shuchao, 2021. "On the extremal values for the Mostar index of trees with given degree sequence," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    2. Gutman, Ivan, 2018. "Stepwise irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 234-238.
    3. Abdo, Hosam & Dimitrov, Darko & Gutman, Ivan, 2019. "Graph irregularity and its measures," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 317-324.
    4. Tepeh, Aleksandra, 2019. "Extremal bicyclic graphs with respect to Mostar index," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 319-324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guorong & Deng, Kecai, 2023. "The maximum Mostar indices of unicyclic graphs with given diameter," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    2. Hui Wang & Mengmeng Liu, 2023. "The Upper Bound of the Edge Mostar Index with Respect to Bicyclic Graphs," Mathematics, MDPI, vol. 11(11), pages 1-8, May.
    3. Wei Gao & Muhammad Aamir & Zahid Iqbal & Muhammad Ishaq & Adnan Aslam, 2019. "On Irregularity Measures of Some Dendrimers Structures," Mathematics, MDPI, vol. 7(3), pages 1-15, March.
    4. Li, Shuchao & Liu, Xin & Sun, Wanting & Yan, Lixia, 2023. "Extremal trees of a given degree sequence or segment sequence with respect to average Steiner 3-eccentricity," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    5. Dobrynin, Andrey A. & Sharafdini, Reza, 2020. "Stepwise transmission irregular graphs," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    6. Réti, Tamás, 2019. "On some properties of graph irregularity indices with a particular regard to the σ-index," Applied Mathematics and Computation, Elsevier, vol. 344, pages 107-115.
    7. Dimitrov, Darko & Stevanović, Dragan, 2023. "On the σt-irregularity and the inverse irregularity problem," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    8. Sakander Hayat & Amina Arif & Laiq Zada & Asad Khan & Yubin Zhong, 2022. "Mathematical Properties of a Novel Graph-Theoretic Irregularity Index with Potential Applicability in QSPR Modeling," Mathematics, MDPI, vol. 10(22), pages 1-24, November.
    9. Ali, Akbar & Došlić, Tomislav, 2021. "Mostar index: Results and perspectives," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    10. Deng, Kecai & Li, Shuchao, 2021. "On the extremal values for the Mostar index of trees with given degree sequence," Applied Mathematics and Computation, Elsevier, vol. 390(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.