IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v391y2021ics0096300320306251.html
   My bibliography  Save this article

Spectral filters connecting high order systems

Author

Listed:
  • Amparan, A.
  • Marcaida, S.
  • Zaballa, I.

Abstract

Three criteria are given to characterize when two linear dynamical systems have the same spectral structure (same finite and infinite elementary divisors). They are allowed to have different orders or sizes and their leading coefficient may be singular. One of the criteria uses generalized reversal matrix polynomials, while the others rely on the existence of spectral filters. These are matrix polynomials which play a similar role to the change of bases for first order systems. A constructive procedure is presented to obtain spectral filters linking any two systems with the same spectral structure. Connections are made with the second-order systems decoupling problem.

Suggested Citation

  • Amparan, A. & Marcaida, S. & Zaballa, I., 2021. "Spectral filters connecting high order systems," Applied Mathematics and Computation, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320306251
    DOI: 10.1016/j.amc.2020.125672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320306251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320306251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.