IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v389y2021ics0096300320305324.html
   My bibliography  Save this article

The reflectionless properties of Toeplitz waves and Hankel waves: An analysis via Bessel functions

Author

Listed:
  • Burrage, Kevin
  • Burrage, Pamela
  • MacNamara, Shev

Abstract

We study reflectionless properties at the boundary for the wave equation in one space dimension and time, in terms of a well-known matrix that arises from a simple discretisation of space. It is known that all matrix functions of the familiar second difference matrix representing the Laplacian in this setting are the sum of a Toeplitz matrix and a Hankel matrix. The solution to the wave equation is one such matrix function. Here, we study the behaviour of the corresponding waves that we call Toeplitz waves and Hankel waves. We show that these waves can be written as certain linear combinations of even Bessel functions of the first kind. We find exact and explicit formulae for these waves. We also show that the Toeplitz and Hankel waves are reflectionless on even, respectively odd, traversals of the domain. Our analysis naturally suggests a new method of computer simulation that allows control, so that it is possible to choose — in advance — the number of reflections. An attractive result that comes out of our analysis is the appearance of the well-known shift matrix, and also other matrices that might be thought of as Hankel versions of the shift matrix. By revealing the algebraic structure of the solution in terms of shift matrices, we make it clear how the Toeplitz and Hankel waves are indeed reflectionless at the boundary on even or odd traversals. Although the subject of the reflectionless boundary condition has a long history, we believe the point of view that we adopt here in terms of matrix functions is new.

Suggested Citation

  • Burrage, Kevin & Burrage, Pamela & MacNamara, Shev, 2021. "The reflectionless properties of Toeplitz waves and Hankel waves: An analysis via Bessel functions," Applied Mathematics and Computation, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:apmaco:v:389:y:2021:i:c:s0096300320305324
    DOI: 10.1016/j.amc.2020.125576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:389:y:2021:i:c:s0096300320305324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.