IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v388y2021ics0096300320305002.html
   My bibliography  Save this article

On the efficient implementation of PVM methods and simple Riemann solvers. Application to the Roe method for large hyperbolic systems

Author

Listed:
  • Pimentel-García, Ernesto
  • Parés, Carlos
  • Castro, Manuel J.
  • Koellermeier, Julian

Abstract

Polynomial Viscosity Matrix (PVM) methods can be considered as approximations of the Roe method in which the absolute value of the Roe matrix appearing in the numerical viscosity is replaced by the evaluation of the Roe matrix at a chosen polynomial that approximates the absolute value function. They are in principle cheaper than the Roe method since the computation and the inversion of the eigenvector matrix is not necessary. In this article, an efficient implementation of the PVM based on polynomials that interpolate the absolute value function at some points is presented. This implementation is based on the Newton form of the polynomials. Moreover, many numerical methods based on simple Riemann solvers (SRS) may be interpreted as PVM methods and thus this implementation can be also applied to them: the close relation between PVM methods and simple Riemann solvers is revisited here and new shorter proofs based on the classical interpolation theory are given. In particular, Roe method can be interpreted both as a SRS and as a PVM method so that the new implementation can be used. This implementation, that avoids the computation and the inversion of the eigenvector matrix, is called Newton Roe method. Newton Roe method yields the same numerical results of the standard Roe method, with less runtime for large PDE systems. Numerical results for two-layer Shallow Water Equations and Quadrature-Based Moment Equations show a significant speedup if the number of equations is large enough.

Suggested Citation

  • Pimentel-García, Ernesto & Parés, Carlos & Castro, Manuel J. & Koellermeier, Julian, 2021. "On the efficient implementation of PVM methods and simple Riemann solvers. Application to the Roe method for large hyperbolic systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
  • Handle: RePEc:eee:apmaco:v:388:y:2021:i:c:s0096300320305002
    DOI: 10.1016/j.amc.2020.125544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:388:y:2021:i:c:s0096300320305002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.