IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v386y2020ics0096300320304276.html
   My bibliography  Save this article

Basis functions for residual stresses

Author

Listed:
  • Tiwari, Sankalp
  • Chatterjee, Anindya

Abstract

We consider arbitrary preexisting residual stress states in arbitrarily shaped, unloaded bodies. These stresses must be self-equilibrating and traction free. Common treatments of the topic tend to focus on either the mechanical origins of the stress, or methods of stress measurement at certain locations. Here we take the stress field as given and consider the problem of approximating any such stress field, in a given body, as a linear combination of predetermined fields which can serve as a basis. We consider planar stress states in detail, and introduce an extremization problem that leads to a linear eigenvalue problem. Eigenfunctions of that problem form an orthonormal basis for all possible residual stress states of sufficient smoothness. In numerical examples, convergence of the approximating stress fields is demonstrated in the L2 norm for continuous stress fields as well as for a stress field with a simple discontinuity. Finally, we outline the extension of our theory to three dimensional bodies and states of stress. Our approach can be used to describe arbitrary preexisting residual stress states in arbitrarily shaped bodies using basis functions that are determined by the body geometry alone.

Suggested Citation

  • Tiwari, Sankalp & Chatterjee, Anindya, 2020. "Basis functions for residual stresses," Applied Mathematics and Computation, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304276
    DOI: 10.1016/j.amc.2020.125468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320304276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.