IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v385y2020ics009630032030391x.html
   My bibliography  Save this article

Blocking defector invasion by focusing on the most successful partner

Author

Listed:
  • Szolnoki, Attila
  • Chen, Xiaojie

Abstract

According to the standard protocol of spatial public goods game, a cooperator player invests not only into his own game but also into the games organized by neighboring partners. In this work, we relax this assumption by allowing cooperators to decide which neighboring group to prefer instead of supporting them uniformly. In particular, we assume that they select their most successful neighbor and focus external investments exclusively into the related group. We show that this very simple alteration of the dynamical rule results in a surprisingly positive evolutionary outcome – cooperators prevail even in harsh environment represented by small values of the synergy factor in the game. The microscopic mechanism behind the reported success of the cooperator strategy can be explained by a blocking mechanism which affects the propagations of competing strategies in a biased way. Our results, which remain intact by using different interaction topologies, reveal that it could be beneficial to concentrate individual efforts to reach a higher global wellbeing.

Suggested Citation

  • Szolnoki, Attila & Chen, Xiaojie, 2020. "Blocking defector invasion by focusing on the most successful partner," Applied Mathematics and Computation, Elsevier, vol. 385(C).
  • Handle: RePEc:eee:apmaco:v:385:y:2020:i:c:s009630032030391x
    DOI: 10.1016/j.amc.2020.125430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030391X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    2. Cao, Xian-Bin & Du, Wen-Bo & Rong, Zhi-Hai, 2010. "The evolutionary public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1273-1280.
    3. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    4. Liu, Danna & Huang, Changwei & Dai, Qionglin & Li, Haihong, 2019. "Positive correlation between strategy persistence and teaching ability promotes cooperation in evolutionary Prisoner’s Dilemma games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 267-274.
    5. Zhang, Haifeng & Yang, Hanxin & Du, Wenbo & Wang, Binghong & Cao, Xianbin, 2010. "Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(5), pages 1099-1104.
    6. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    7. Zhang, Haifeng & Shi, Dongmei & Liu, Runran & Wang, Binghong, 2012. "Dynamic allocation of investments promotes cooperation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2617-2622.
    8. Yang, Han-Xin & Yang, Jing, 2019. "Reputation-based investment strategy promotes cooperation in public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 886-893.
    9. Cheng, Fei & Chen, Tong & Chen, Qiao, 2019. "Matching donations based on social capital in Internet crowdfunding can promote cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    10. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    11. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    12. Fu, Mingjian & Guo, Wenzhong & Cheng, Linlin & Huang, Shouying & Chen, Dewang, 2019. "History loyalty-based reward promotes cooperation in the spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1323-1329.
    13. Karthik Panchanathan & Robert Boyd, 2004. "Indirect reciprocity can stabilize cooperation without the second-order free rider problem," Nature, Nature, vol. 432(7016), pages 499-502, November.
    14. Wu-Jie Yuan & Cheng-Yi Xia, 2014. "Role of Investment Heterogeneity in the Cooperation on Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2024. "Suppressing defection by increasing temptation: The impact of smart cooperators on a social dilemma situation," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    2. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    3. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Du, Chunpeng & Guo, Keyu & Lu, Yikang & Jin, Haoyu & Shi, Lei, 2023. "Aspiration driven exit-option resolves social dilemmas in the network," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    5. Jiang, Luo-Luo & Gao, Jian & Chen, Zhi & Li, Wen-Jing & Kurths, Jürgen, 2021. "Reducing the bystander effect via decreasing group size to solve the collective-risk social dilemma," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    6. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Li, Wen-Jing & Jiang, Luo-Luo & Chen, Zhi & Perc, Matjaž & Slavinec, Mitja, 2020. "Optimization of mobile individuals promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Huang, Yongchao & Wan, Siyi & Zheng, Junjun & Liu, Wenyi, 2023. "Evolution of cooperation in spatial public goods game with interactive diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    10. Deng, Yunsheng & Zhang, Jihui, 2021. "The role of the preferred neighbor with the expected payoff on cooperation in spatial public goods game under optimal strategy selection mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    11. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Restoring spatial cooperation with myopic agents in a three-strategy social dilemma," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    12. Jia, Chun-Xiao & Liu, Run-Ran, 2022. "A moderate self-interest preference promotes cooperation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Chen, Liang & Sun, Jingjie & Li, Kun & Li, Qiaoru, 2022. "Research on the effectiveness of monitoring mechanism for “yield to pedestrian” based on system dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    14. Schauf, Andrew & Oh, Poong, 2021. "Adaptation strategies and collective dynamics of extraction in networked commons of bistable resources," SocArXiv wmtqk, Center for Open Science.
    15. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Xie, Kai & Liu, Xingwen & Wang, Huazhang & Jiang, Yulian, 2023. "Multi-heterogeneity public goods evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Li, Xiaopeng & Han, Weiwei & Yang, Wenjun & Wang, Juan & Xia, Chengyi & Li, Hui-jia & Shi, Yong, 2022. "Impact of resource-based conditional interaction on cooperation in spatial social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Wang, Xiaofeng & Perc, Matjaž, 2021. "Emergence of cooperation in spatial social dilemmas with expulsion," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    19. You, Feng & Yang, Han-Xin & Li, Yumeng & Du, Wenbo & Wang, Gang, 2023. "A modified Vicsek model based on the evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2023. "Group-size dependent synergy in heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2021. "Small fraction of selective cooperators can elevate general wellbeing significantly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. Chuanyun Li & Xia Cao & Ming Chi, 2020. "Research on an evolutionary game model and simulation of a cluster innovation network based on fairness preference," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    4. Quan, Ji & Tang, Caixia & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Reputation evaluation with tolerance and reputation-dependent imitation on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    5. Pan, Jianchen & Zhang, Lan & Han, Wenchen & Huang, Changwei, 2023. "Heterogeneous investment promotes cooperation in spatial public goods game on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Zhang, Lan & Xie, Yuan & Huang, Changwei & Li, Haihong & Dai, Qionglin, 2020. "Heterogeneous investments induced by historical payoffs promote cooperation in spatial public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    8. Fan, Ruguo & Zhang, Yingqing & Luo, Ming & Zhang, Hongjuan, 2017. "Promotion of cooperation induced by heterogeneity of both investment and payoff allocation in spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 454-463.
    9. Yu, Fengyuan & Wang, Jianwei & He, Jialu, 2022. "Inequal dependence on members stabilizes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    10. Quan, Ji & Tang, Caixia & Wang, Xianjia, 2021. "Reputation-based discount effect in imitation on the evolution of cooperation in spatial public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    11. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Wang, Hanchen & Sun, Yichun & Zheng, Lei & Du, Wenbo & Li, Yumeng, 2018. "The public goods game on scale-free networks with heterogeneous investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 396-404.
    13. Lu, Peng & Wang, Fang, 2015. "Heterogeneity of inferring reputation probability in cooperative behaviors for the spatial prisoners’ dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 367-378.
    14. Wang, Qun & Wang, Hanchen & Zhang, Zhuxi & Li, Yumeng & Liu, Yu & Perc, Matjaž, 2018. "Heterogeneous investments promote cooperation in evolutionary public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 570-575.
    15. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "The impact of current and historical reputation with non-uniform change on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Quan, Ji & Zhou, Yawen & Wang, Xianjia & Yang, Jian-Bo, 2020. "Information fusion based on reputation and payoff promotes cooperation in spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    17. Zhenghong Wu & Huan Huang & Qinghu Liao, 2021. "The study on the role of dedicators on promoting cooperation in public goods game," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    18. Lu, Peng, 2015. "Individual choice and reputation distribution of cooperative behaviors among heterogeneous groups," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 39-46.
    19. Jin, Xing & Tao, Yuchen & Wang, Jingrui & Wang, Chao & Wang, Yongheng & Zhang, Zhouyang & Wang, Zhen, 2023. "Strategic use of payoff information in k-hop evolutionary Best-shot networked public goods game," Applied Mathematics and Computation, Elsevier, vol. 459(C).
    20. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2021. "Effect of reputation-based heterogeneous investment on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:385:y:2020:i:c:s009630032030391x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.