IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v382y2020ics0096300320303064.html
   My bibliography  Save this article

Independent domination, colorings and the fractional idomatic number of a graph

Author

Listed:
  • Goddard, Wayne
  • Henning, Michael A.

Abstract

A set S of vertices is an independent dominating set if it is both independent and dominating, and the idomatic number is the maximum number of vertex-disjoint independent dominating sets. In this paper we consider a fractional version of this. Namely, we define the fractional idomatic number as the maximum ratio |F|/m(F) over all families F of independent dominating sets, where m(F) denotes the maximum number of times an element appears in F. We start with some bounds including a connection with dynamic colorings. Then we show that the independent domination number of a planar graph with minimum degree 2 is at most half its order, and its fractional idomatic number is at least 2. Moreover, we show that an outerplanar graph of minimum degree 2 has idomatic number at least 2. We conclude by providing formulas for the parameters for the join, disjoint union and lexicographic product of graphs, while providing some bounds for cubic graphs.

Suggested Citation

  • Goddard, Wayne & Henning, Michael A., 2020. "Independent domination, colorings and the fractional idomatic number of a graph," Applied Mathematics and Computation, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320303064
    DOI: 10.1016/j.amc.2020.125340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320303064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320303064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.