IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v381y2020ics0096300320302794.html
   My bibliography  Save this article

The exact formula of the optimal penalty parameter value of the spectral penalty method for differential equations

Author

Listed:
  • Song, Zhao
  • Jung, Jae-Hun

Abstract

Spectral penalty methods were originally introduced to deal with the stability of the spectral solution coupled with the boundary conditions for differential equations [Funaro 1986, Funaro and Gottlieb 1988]. Later the penalty method was used for spectral methods to be implemented in irregular domains in multiple dimensions. It has been also shown that there are close relations between discontinuous Galerkin methods and spectral penalty methods in multi-domain and element setting. In addition to stability, the penalty method provides a better accuracy because of its asymptotic behavior in the neighborhood of boundaries. The optimal value of the penalty parameter for accuracy has not been studied thoroughly for the exact form. In this short note, we consider a simple differential equation and study the optimal value of the penalty parameter by minimizing the error in maximum norm. We focus on the optimization for the case of Chebyshev spectral collocation method. We provide its exact form and verify it numerically.

Suggested Citation

  • Song, Zhao & Jung, Jae-Hun, 2020. "The exact formula of the optimal penalty parameter value of the spectral penalty method for differential equations," Applied Mathematics and Computation, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302794
    DOI: 10.1016/j.amc.2020.125313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.