IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v379y2020ics0096300320302344.html
   My bibliography  Save this article

A divide-and-conquer approach for the computation of the Moore-Penrose inverses

Author

Listed:
  • Chen, Xuzhou
  • Ji, Jun

Abstract

In this paper, we present a divide-and-conquer method for computing the Moore-Penrose inverse of a bidiagonal matrix. Working together with the effective parallel algorithms for the reduction of a general matrix to the bidiagonal matrix, the proposed method provides a new parallel approach for the computation of the Moore-Penrose inverse of a general matrix. This new approach was implemented in the CUDA environment and a significant speedup was observed on randomly generated matrices.

Suggested Citation

  • Chen, Xuzhou & Ji, Jun, 2020. "A divide-and-conquer approach for the computation of the Moore-Penrose inverses," Applied Mathematics and Computation, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:apmaco:v:379:y:2020:i:c:s0096300320302344
    DOI: 10.1016/j.amc.2020.125265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320302344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanimirović, Predrag S. & Katsikis, Vasilios N. & Pappas, Dimitrios, 2016. "Computing {2,4} and {2,3}-inverses by using the Sherman–Morrison formula," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 584-603.
    2. Xingping Sheng, 2014. "Execute Elementary Row and Column Operations on the Partitioned Matrix to Compute M-P Inverse," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jie & Gao, Feng & Li, Yongshu, 2019. "An efficient method to compute different types of generalized inverses based on linear transformation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 367-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:379:y:2020:i:c:s0096300320302344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.