IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v378y2020ics0096300320301648.html
   My bibliography  Save this article

Stationary splitting iterative methods for the matrix equation AXB=C

Author

Listed:
  • Liu, Zhongyun
  • Li, Zhen
  • Ferreira, Carla
  • Zhang, Yulin

Abstract

Stationary splitting iterative methods for solving AXB=C are considered in this paper. The main tool to derive our new method is the induced splitting of a given nonsingular matrix A=M−N by a matrix H such that (I−H)−1 exists. Convergence properties of the proposed method are discussed and numerical experiments are presented to illustrate its computational efficiency and the effectiveness of some preconditioned variants. In particular, for certain surface fitting applications our method is much more efficient than the progressive iterative approximation (PIA), a conventional iterative method often used in computer aided geometric design (CAGD).

Suggested Citation

  • Liu, Zhongyun & Li, Zhen & Ferreira, Carla & Zhang, Yulin, 2020. "Stationary splitting iterative methods for the matrix equation AXB=C," Applied Mathematics and Computation, Elsevier, vol. 378(C).
  • Handle: RePEc:eee:apmaco:v:378:y:2020:i:c:s0096300320301648
    DOI: 10.1016/j.amc.2020.125195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320301648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhaolu & Tian, Maoyi & Liu, Zhongyun & Xu, Tongyang, 2017. "The Jacobi and Gauss–Seidel-type iteration methods for the matrix equation AXB=C," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 63-75.
    2. Liu, Zhongyun & Zhou, Yang & Zhang, Yuelan & Lin, Lu & Xie, Dongxiu, 2019. "Some remarks on Jacobi and Gauss–Seidel-type iteration methods for the matrix equation AXB=C," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 305-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Zhaolu & Wang, Yudong & Wu, Nian-Ci & Liu, Zhongyun, 2024. "On the parameterized two-step iteration method for solving the matrix equation AXB = C," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    2. Zhang, Huiting & Liu, Lina & Liu, Hao & Yuan, Yongxin, 2022. "The solution of the matrix equation AXB=D and the system of matrix equations AX=C,XB=D with X*X=Ip," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. Lili Xing & Wendi Bao & Weiguo Li, 2023. "On the Convergence of the Randomized Block Kaczmarz Algorithm for Solving a Matrix Equation," Mathematics, MDPI, vol. 11(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Zhaolu & Wang, Yudong & Wu, Nian-Ci & Liu, Zhongyun, 2024. "On the parameterized two-step iteration method for solving the matrix equation AXB = C," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    2. Tian, Zhaolu & Li, Xiaojing & Dong, Yinghui & Liu, Zhongyun, 2021. "Some relaxed iteration methods for solving matrix equation AXB=C," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Liu, Zhongyun & Zhou, Yang & Zhang, Yuelan & Lin, Lu & Xie, Dongxiu, 2019. "Some remarks on Jacobi and Gauss–Seidel-type iteration methods for the matrix equation AXB=C," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 305-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:378:y:2020:i:c:s0096300320301648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.