IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v375y2020ics0096300320300606.html
   My bibliography  Save this article

The 1-good-neighbor diagnosability of unidirectional hypercubes under the PMC model

Author

Listed:
  • Lin, Shangwei
  • Zhang, Wenli

Abstract

The hypercubes are a famous class of networks for multiprocessor systems and the unidirectional hypercubes are hypercube interconnection topologies with simplex unidirectional links. Under the classic PMC model, each processor in a multiprocessor system tests a subset of its neighbors. The collection of tests in this system can be modeled by a directed graph. The diagnosability of a system is the maximum number of faulty processors that the system may identify according to the outcomes of the tests, and the g-good-neighbor diagnosability is a more accurate indicator than the diagnosability. In this paper, we first determine the 1-good-neighbor connectivity of unidirectional hypercubes and then determine the diagnosability and 1-good-neighbor diagnosability of hypercube networks when unidirectional hypercubes are used as the collection of tests under the PMC model.

Suggested Citation

  • Lin, Shangwei & Zhang, Wenli, 2020. "The 1-good-neighbor diagnosability of unidirectional hypercubes under the PMC model," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300606
    DOI: 10.1016/j.amc.2020.125091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shiying & Ma, Xiaolei, 2018. "The g-extra connectivity and diagnosability of crossed cubes," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 60-66.
    2. Wang, Shiying & Yang, Yuxing, 2017. "The 2-good-neighbor (2-extra) diagnosability of alternating group graph networks under the PMC model and MM* model," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 241-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shiying & Ma, Xiaolei, 2018. "The g-extra connectivity and diagnosability of crossed cubes," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 60-66.
    2. Zhang, Guozhen & Wang, Dajin, 2019. "Structure connectivity and substructure connectivity of bubble-sort star graph networks," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    3. Wei, Yulong & Xu, Min, 2018. "The 1, 2-good-neighbor conditional diagnosabilities of regular graphs," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 295-310.
    4. Balbuena, C. & Marcote, X., 2019. "The p-restricted edge-connectivity of Kneser graphs," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 258-267.
    5. Liu, Qinghai & Hong, Yanmei, 2019. "The reliability of lexicographic product digraphs," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 449-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.