IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v375y2020ics0096300320300527.html
   My bibliography  Save this article

Moore–Penrose approach in the Hough transform framework

Author

Listed:
  • Beltrametti, M.C.
  • Sendra, J.R.
  • Sendra, J.
  • Torrente, M.

Abstract

Let F(x, a) be a real polynomial in two sets of variables, x and a, that is linear with respect to one of the variable sets, say a. In this paper, we deal with two of the main steps of the Hough transform framework for the pattern recognition technique to detect loci in images. More precisely, we present an algorithmic process, based on the Moore–Penrose pseudo-inverse, to provide a region of analysis in the parameter space. In addition, we state an upper bound for the sampling distance of the discretization of the parameter space region.

Suggested Citation

  • Beltrametti, M.C. & Sendra, J.R. & Sendra, J. & Torrente, M., 2020. "Moore–Penrose approach in the Hough transform framework," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300527
    DOI: 10.1016/j.amc.2020.125083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sendra, J. Rafael & Sendra, Juana, 2017. "Computation of Moore–Penrose generalized inverses of matrices with meromorphic function entries," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 355-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Eunice Y.S. & Corless, Robert M. & González-Vega, Laureano & Sendra, J. Rafael & Sendra, Juana, 2022. "Inner Bohemian inverses," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Stanimirović, Predrag S. & Ćirić, Miroslav & Lastra, Alberto & Sendra, Juan Rafael & Sendra, Juana, 2021. "Representations and symbolic computation of generalized inverses over fields," Applied Mathematics and Computation, Elsevier, vol. 406(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.