IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v373y2020ics0096300319310185.html
   My bibliography  Save this article

Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load

Author

Listed:
  • Adhikari, Balakrishna
  • Singh, B.N.

Abstract

In this paper, the dynamic instability behavior of laminated composite plate structure is predicted under different types of non-uniform harmonic edge compressive loading. A nine degree of freedom (DOF) type polynomial based higher order shear deformation theory (HSDT) is considered for the finite element discretization of the plate. The application of non-uniform harmonic in-plane edge load causes the in-plane stress variation to be non-uniform. Hence, the in-plane stresses need to be evaluated, prior to the instability analysis, for the evaluation of critical buckling load. These in-plane stresses are computed using in-plane stress analysis approach using finite element method. The differential equations of motion of the system are turned into a set of ordinary differential equations (Mathieu type equations) and solved as a general eigenvalue problem as per the procedure suggested by Bolotin. The accuracy and flexibility of the present model are validated by contrasting the present outcomes and the available solution. Further, the impact various parameters like span-thickness ratio, aspect ratio, diverse in edge constraints, different types of non-uniform periodic edge load, etc. on the dynamic instability behavior of the laminated composite plate are contemplated.

Suggested Citation

  • Adhikari, Balakrishna & Singh, B.N., 2020. "Parametric instability analysis of laminated composite plate subject to various types of non-uniform periodic in-plane edge load," Applied Mathematics and Computation, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:apmaco:v:373:y:2020:i:c:s0096300319310185
    DOI: 10.1016/j.amc.2019.125026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319310185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.125026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shukla, Vivekanand & Singh, Jeeoot, 2022. "Thermo-mechanical stability analysis of angle-ply plates using meshless method," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:373:y:2020:i:c:s0096300319310185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.